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ABSTRACT

A ground test of a specially instrumented Space Shuttle Main Engine (SSME)

revealed excessively high strains in the high pressure Liquid Oxygen (LOX)

Inlet line which carries LOX to the Main Injector. The inlet tee (the

instrumented part) acts as a manifold which utilizes two splitter vanes to

direct the flow of LOX into the main injector. When the high strains were

discovered, it was thought that these splitter vanes, coupled with high energy

flow was the source. This resulted not only in high strains in the LOX inlet

tee, but excessive vibration at a frequency of 4000 Hz located at the gimbal

bearing (attach point to orbiter), and at the main injector. This was later

to be known as "The 4kHz Phenomenon"

A team was assembled to determine the extent, cause, and solution of the

phenomenon. Parallel efforts were conducted through laboratory testing to

simulate the phenomenon and theoretical analysis to predict response. This

paper will deal with the dynamic analysis which was used to predict the

response due to the 4kHz phenomenon and the analysis used to aid in the design

modification required to the hardware to reduce or eliminate the phenomenon.

HISTORY

The 4kHz phenomenon was first observed during a ground test of an SSME which

contained strain gages at the underside of the LOX inlet tee (see Figure 1).

During the mainstage portion of the test, high strains were measured at the

inlet tee at a frequency of about 4000 Hz. At this same time during the test,

high accelerations were measured at the gimbal bearing. It was hypothesized

that the splitter vanes within the inlet tee were the cause (refer to Figure

l). This was later confirmed when a downward shift in the 4kHz frequency was

observed in a later test. More ground tests followed. Several tests even

exceeded I04_ rated power level with no change in the shifted frequency (now,

at 3700 Rz). During this time, a detailed finite element model (FEM) of the

splitter vanes was created to predict the location and size of a possible

crack in the vanes (refer to Figure 2). It was thought that a crack in the



vanes caused the downward shift in the 4kHz frequency. The model showed that

a single crack of about .8 inches long, through the vane at its lower leading

edge would produce a frequency shift seen on engine test results. When the

engine was disassembled, and the elbow cut to expose the vanes, cracks were

indeed found on one vane. Figure 3 illustrates the crack locations and

sizes. The model predicted and the inspection confirmed that the lower

leading edge of the vane was particularly sensitive to cracking. This was

judged by the relative size of the cracks seen in Figure 3.

A second engine was also found to have exhibited the 4kHz phenomenon with a

sudden downward shift in frequency. This engine was unique in that there was

a double shift in the frequency. Inspections revealed that both vanes had

cracks present in them with the largest located at the lower leading edges

(refer to Figure 4).

THE PHENOMENON ITSELF

It was clear that a phenomenon existed at 4kHz and it originated near or at

the splitter vanes of the LOX inlet tee. The question was; What was the

cause? Hundreds of tests were reviewed and checked against any hardware

changes or changes in test stand configurations. The study revealed that the

phenomenon was independent of hardware changes and test stand configurations.

The study did reveal, however, that the phenomenon existed on only 17% of the

engines built and it existed since nearly the beginning of the program. The

reason it was not detected early on was because the response was interpreted

as the High Pressure LOX Pump (HPOTP) eight times synchronous frequency which

occurs very near 4000 Hz. Three mechanisms were considered for investigation;

l) flow induced vibrations of the vanes coupled with a strong 4kHz frequency

of the thrust cone which amplified the energy from the vanes to the gimbal

bearing, 2) combustion driven oscillations, and 3) acoustics. The ladder two

mechanisms were ruled out early due to lack of support by future measurements

taken on subsequent tests. This left flow induced vibration as the main

candidate. Parallel efforts were then conducted to, l) understand the cause



through extensive flow and vibration testing as well as analysis and 2)

develop a design change, retrofitable to all affected and future engines that

would reduce or eliminate the phenomenon.

Extensive flow tests were conducted on several different test articles using

different flow media. Plastic models were used as well as actual hardware in

order to obtain a proper database in which to get results. Measurements taken

in the wake of the vanes identified a periodic response similar to vortex

shedding which occurred near 4kHz.

DYNAMIC ANALYSIS

While extensive testing to determine the mechanism was in progress, structural

analyses were being performed to determine the modes, frequencies, and

response of the LOX system to various forcing functions and vibration

environments. Two analyses were conducted in parallel using finite element

models (FEM). A course system model ("Global Model") was used which included

the high pressure LOX duct, inlet tee, and thrust cone with gimbal bearing

(see Figure 5). This model was used to determine system response as well as

response at the gimbal bearing due to various loading conditions. This model

consisted of mainly plate (shell) elements and beam elements. The second

model was a much more refined model ("Local Model"). It included the high

pressure LOX duct and inlet tee only. The inlet tee was comprised of solid

brick elements with membranes on the inner and out surfaces for surface

response, and the duct was comprised of beam elements (see Figure 6). This

model was used to obtain detail responses of the splitter vanes due to various

loading conditions. The analysis described here will be concerned with the

"local model," since the design modifications were studied using a portion of

the local model.

MODEL DESCRIPTION

As mentioned earlier, the local model was mainly comprised of solid brick

elements. The geometry of the inlet tee was taken from the computer generated



drawing created by the designers. This geometry was transferred to a

preprocessor known as Computer Aided Design System (CAEOS). A solid meshwas
generated on the geometry in CAEDS. Due to the criticallity of the analysis,

the high frequencies considered and the complexity of the part, a very

detailed grid was created. This meant a large number of degrees of freedom

(OOF) was required (about 30000 OOF). Figure 7 illustrates the complexity of

the model. Once the FEM was created and checked out, it was transferred to

STARDYNE finite element code for the dynamic analysis. A program was written

to create membrane elements on the inner and outer surfaces of the brick

elements in order to obtain response on the surfaces of the inlet tee and

splitter vanes. A model of the high pressure LOX duct along with the Main

Oxidizer Valve (MOV) was included in order to obtain the effects of duct

coupling with the inlet tee. It was unknown at this time whether to include

the thrust cone and gimbal bearing, therefore, case studies were run on the

smaller, less refined model. Frequencies and mode shapes were calculated to

5000 Hz for the inlet tee/duct model with and without the thrust cone. Most

of the modes and frequencies showed very little difference between the two

boundary conditions, especially in the 4kHz range. TABLE A shows the

frequency comparison in the 4kHz range of the two boundary conditions. The

results of the case study indicated that the thrust was not necessary for

determining the response of the splitter vanes. Rather than fix the area

where the inlet tee is welded to the thrust cone, spring elements which

matched the stiffness of the thrust cone were placed at the weld area. The

other end of the duct, which is attached to the HPOTP was assumed to contain a

fixed boundary since the stiffness of the pump far exceeds the stiffness of

the duct and therefore would resemble a near rigid boundary.

While the FEM of the LOX system was being created and checked, modal testing

was being conducted on various test articles using different flow media such

as water, freon, LN , and air. These "rap" tests showed the effects due
2

to mass loading, pressure, and temperature. The modal tests indicated the

following results;



I) Two dominant vane modes mere found near 4kHz, a first bending

mode of the vanes and a more dominant out-of-phase bending of

the leading edge and trailing edge of the vanes (refer to

Figure 8).

2) The thrust cone fifth diametral mode, which occurred at 4kHz

actively participated in the phenomenon by amplifying the energy

from the splitter vanes. This increased the validity of a

fluid-structure interaction (refer to Figure g).

3) The effect due to pressure temperature, and mass loading lowered

the splitter vane frequencies (near 4kHz) by about 18-25%.

Other modes exhibited different frequency shifts.

4) The duct itself exhibited a dominant mode (3rd diametral) at

4kHz which could be coupled with the vane response.

Once the boundary conditions of the FEM were established, the natural

frequencies and mode shapes were calculated. At this time, the dominant vane

modes had been determined through lab testing, which offered a direction for

the analysis. A careful review of all modes and frequencies was conducted and

two dominant vane modes were discovered. A first bending mode of the vanes

was found at 3895 Hz and a more dominant twisting mode was found at 5360 Hz.

It should be noted that this is a linear analysis, therefore, the effects of

pressure (stress stiffening) and mass loading were not taken into account.

Since lab tests revealed that these conditions caused an 18-25% downward shift

in frequency in the 4kHz modes, the actual model frequencies for the dominant

vane twisting mode would be between 4020 and 4360 Hz. A comparison of the

model 4kHz modes and several of the modal test results can be found on TABLE

B. A point to note here is that there is a difference between the model modes

and "Engine O00B" modes due to loading effects in 0008, but the ratio of the

twisting mode-to-the first bending mode is the same for both cases which

indicates that there is an "apples-to-apples" comparison.



After the natural frequencies and mode shapes were calculated and their

comparison to lab test results were favorable, a random vibration response

analysis was initiated. A multi-base response analysis was required using the

influence coefficient method of excitation. The input included POWER SPECTRAL

DENSITY's (PSDts) taken from actual engine ground test data. The results

showed that the highest stressed areas in the vanes were located at the lower

leading and lower trailing edges. This correlates with visible inspection of

the cracked areas of the vanes. A program was written which converted modal

stresses to modal strains. The modal strains were used in a parallel random

response analysis in order to obtain strains which were compared to measured

strains from the ground tests performed earlier. Results from the comparison

can be seen on TABLE C. Strain gage two (2) is the gage located directly

below the splitter vanes (see Figure 1).

The next step was to determine the vane response to flow loads. The results

would give an indication if the vanes would respond to the various flow loads

at 4kHz. The first loading condition was turbulant buffeting along the

vanes. The input was formulated from a water flow test through a plastic test

article. The PSD and load profile can be seen on Figure lO. The results

indicated that the twisting mode of the vanes (at 5360 Hz) did respond to the

turbulent buffeting, but the response was not sufficient to cause high

accelerations at the gimbal bearing, nor were the stresses high enough to

crack the vanes. It was concluded that turbulence alone would not be the

mechanism for the 4kHz response, but might have had some contribution. This

conclusion was based on the fact that the high stressed areas were located in

the regions where the vanes have cracked.

The second loading condition was a sinusoidal load applied at the trailing

edge of the vanes. The steady state loads were taken from a CFD solution and

the time dependent forcing function was developed using a vortex shedding

formula. The load was applied at the trailing edge of the splitter vanes as a

sinusoidal forcing function. Since the amplitude of the forcing function was

unknown, a unit load was applied. The results were very similar to the



turbulence results. The areas of highest stresses in the vanes were in

regions where cracking occurred. The unit load itself only produced a stress

of 310 psi at the lower leading edge of the vane. The stresses required

tocrack the vane were 21000 psi. This meant the input load would have to be

increased by a factor of 68. This results in a 68 pound load at the trailing

edge occurring at 4000 Hz. This amplitude of loading is well within

reasonable limits.

While analyses were continuing in determining a possible mechanism, parallel

efforts were initiated to determine a retrofittable Hfix" to reduce or

eliminate the phenomenon. The initial focus was to increase the frequency of

the vanes (about 15%) enough to decouple the effects of the flow at 4kHz from

a 4kHz mode. When the sinusoid load at the trailing edge was identified, an

additional change to the vanes was necessary in order to reduce the forcing

function itself. Many design changes were proposed. One of the first design

changes was an'S' shaped scallop of the leading and trailing edge (see Figure

ll). The 'S' shape was derived by detailed flow calculations. Unfortunately,

this design only increased the twisting mode by 1.4%. Similar modifications

were considered but yielded similar results. Finally, a scallop of the full

length of the vane at the leading edge was proposed. Several depths of

scalloping were considered. All yielded favorable results. Scalloping the

trailing edge was also considered with good results but was later replaced

with the more favorable beveled trailing edge design which would theoretically

reduce the flow loads derived from a sinusoidal excitation. The final design

modification was scalloping the leading edge about .400 - .525 inches and

beveling the trailing edge (refer to Figure 12). This design increased the

frequency about 13% which would decouple the twisting mode from the flow load

excitation frequency and it would also reduce the flow loads themselves due to

the geometry of the trailing edge (refer to TABLE D for frequency comparison

of vane modifications). Once the final design modification was agreed on, the

engine that exhibited a high 4kHz response was modified and a modal test was

conducted. The results can be found on Figure 14. The modal test showed an

increase of 14% in the twisting mode compared to the model prediction of 13%



and the test showed a 3% decrease in the vane bending mode compared to the

model prediction of a 4.5% decrease. After management approval, the

modification was made on the first engine discovered to exhibit the 4kHz

phenomenon. This engine was placed in a test stand and hot fired several

times. Figure 15 illustrates the change in response from the baseline engine

to the modified engine (both results are from the same engine). The composite

levels from 20 Hz to lO000 Hz had been reduced by a factor of about 6. The

actual amplitude at 4kHz had decreased by more than two orders of magnitude.

WHY ONLY CERTAIN ENGINES?

In the beginning of the program, detailed reviews of material and

manufacturing processes were initiated which showed no unusual problems.

Modal tests of many inlet tees revealed differences between each tee. The

investigation discovered that the 4kHz tees may have had minor geometry

variations significant to the 4kHz problem at the splitter vane area. Further

investigating is continuing.

SUMMARY

This paper has demonstrated a perfect example of how a problem was identified

through testing, and a program established to identify the extent, cause and

solution to the problem. The program incorporated the close relationship

between analysis, laboratory testing and design in order to understand the

problem and find a solution. Extensive testing was performed to identify the

cause and to verify analysis results, while analysis, through the use of the

finite element method, was used to determine response and to determine effects

of different design modifications which could reduce or eliminate the

problem. The program proved to be a large success due to the success of the

different disciplines involved.
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